Signaling in Multicellular Models of Plant Development

Henrik Jönsson^{1,3}, Bruce E. Shapiro², Elliot M. Meyerowitz¹ and Eric Mjolsness⁴

¹Division of Biology and ²Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA, USA.

³Complex Systems Division, Department of Theoretical Physics, Lund University, Sweden.

⁴Department of Information and Computer Science, University of California, Irvine CA, USA.

The **Shoot Apical Meristem** (**SAM**) of plants is the biological target for a mathematical model of multicellular organisms. The model is implemented *in Silico*, and simulations of the dynamical time development are performed.

The Shoot Apical Meristem (**SAM**) of *Arabidopsis*

- Source of aboveground part of plant
- Small (about 10³ cells)
- Genes important for the development identified

Expression Patterns

- CLAVATA3 (CLV3): stem cell marker
- CLAVATA1 (CLV1): receptor kinase
- WUSCHEL (WUS): homeodomain, transcription factor

CLV3, CLV1 and WUS expressions.

Interactions

Gene interactions are identified by *loss-of-function* and *promoter::gene* mutant experiments.

- WUS induces CLV1 and CLV3 expression
- CLV1 and CLV3 act in a network repressing WUS expression

The interactions between CLV3, CLV1 and WUS regulates the development of the SAM, and thereby the complete plant.

Acknowldgements

B. Wold, M. Heisler and V. Reddy Funding: Swegene, Caltech President's Fund.

The SAM Model Network

How can **WUS** regulate **CLV3** when the expression domains don't overlap?

A partly hypothesized network. **X** is suggested by experiments, but unknown. **L1** and **Y** have genes with analogous expression patterns (ATML1 and ACR4).

The Generic Model

Essential parts of a developmental system are introduced in a mathematical model.

- Cell Growth
- Cell Cycle/Proliferation
- Mechanical Cell Interactions
- Gene Regulatory Network (GRN)
- Molecular Transport

The GRN-Equations

$$au_a \dot{v}_a^{(i)} = g(u_a^{(i)} + h_a) - \lambda_a v_a^{(i)}$$

where

$$u_a^{(i)} = \sum_b T_{ab} v_b^{(i)} + \sum_j \Lambda_{ij} (\hat{T}_{ab} v_b^{(j)} + \sum_{bc} \tilde{T}_{ac}^{(1)} \tilde{T}_{cb}^{(2)} v_b^{(j)} v_c^{(i)}),$$

 \boldsymbol{v} - set of protein concentrations

T - intracellular interactions

 \hat{T} , $\tilde{T}^{(1)}$ $\tilde{T}^{(2)}$ - intercellular interactions

g(x) - a sigmoidal function

 $\lambda, \tau, \Lambda, h$ - parameters

Simulation Results

Simulation of a nongrowing SAM of 1765 cells. The final (stable) expression levels are shown.

The **WUS** expression region is an initial condition. **L1** is expressed only in the surface layer

CLV1 expression surrounds the **WUS** domain.

CLV3 is expressed at the apex.

Simulation Comments

- No growth/WUS repression
- Parameters tuned by hand (no data)
- New hypotheses
- "Correct" expression patterns with few initial conditions

http://www.thep.lu.se/Thenrik http://www-aig.jpl.nasa.gov/public/mls/cellerator http://www.ics.uci.edu/Temj/SISL.htm henrik@caltech.edu, bshapiro@jpl.nasa.gov meyerow@caltech.edu, emj@uci.edu